
www.manaraa.com

ORIGINAL ARTICLE

Dealing with software process requirements complexity:
an information access proposal based on semantic technologies

Ricardo Eito-Brun1 • Antonio Amescua2

Received: 20 August 2015 / Accepted: 24 May 2016 / Published online: 4 June 2016

� Springer-Verlag London 2016

Abstract Organizations developing software for critical

sectors like aerospace, automotive, and medical systems

need to apply process requirements coming from different

sources: industrial standards, customer-provided require-

ments, and procedures from internal quality management

systems. In these situations, software teams need to deal

with complex sets of process requirements that govern

different aspects of their work. This paper describes the

development of a collaborative, web-based solution to

improve access to process requirements. The solution

makes use of semantic technologies to handle the context

of process requirement. Requirements are contextualized

by linking them to activities, tasks, and work products.

With this tool, software engineers have a single point of

access to all the applicable process requirements, avoiding

the risk of missing relevant information.

Keywords Semantic technologies � Software process

modeling � Process requirements � Semantic wiki � SPEM

1 Introduction

Software development for critical sectors like aerospace,

automotive, and medical systems needs to apply hard

guidelines to ensure that products provide the necessary

guarantees regarding functionality, safety, and perfor-

mance. To ensure that final products meet end-users’

expectations, industrial consortiums and standardization

bodies have developed process requirements standards:

Process requirements do not directly address the end-

item system, but rather how the end-item system will

be developed and provided … System or system

element implementation process requirements, such

as mandating a particular design method, are usually

captured in project agreement documentation such as

contracts, statements of work (SOW), and quality

plans. [35]

These requirements add complexity to software devel-

opment: Not only do development teams need to master

domain knowledge, but they must also know the guidelines

in order to conduct different activities and produce

expected deliverables.

Complexity increases when process requirements come

from different sources: (a) internal procedures from the

company’s quality management system (QMS), (b) indus-

try-specific standards, and (c) customer-provided require-

ments. Documents containing process requirements can

build a complex set of constraints. Process requirements

also indicate when evidence must be collected to support

the final qualification and certification of the software

product. Some examples from the aerospace industry

illustrate this complexity:

• Software developed for European Commission’s Gali-

leo satellite constellation must follow requirements

defined in different sources: (a) Galileo Software

Standard (GSWS) [15], that covers processes from

requirements’ specification to software acceptance and

maintenance; (b) Galileo Management Requirements,

& Ricardo Eito-Brun

reito@bib.uc3m.es

Antonio Amescua

amescua@inf.uc3m.es

1 Universidad Carlos III de Madrid, c/Madrid, 128, Getafe,

Madrid, Spain

2 Department of Computer Engineering, Carlos III University,

Madrid, Spain

123

Requirements Eng (2017) 22:527–542

DOI 10.1007/s00766-016-0256-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0256-4&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00766-016-0256-4&amp;domain=pdf


www.manaraa.com

focused on management and project status reporting

[18], (c) Galileo FOC Configuration and data manage-

ment [19] for configuration and document management

activities, (d) Galileo FOC GS Assurance and Safety

Requirements [16], for quality assurance and safety-

related aspects, (e) Galileo FOC-System Verification

Requirements Document [17], governing the planning,

execution, reporting, and tracking of verification activ-

ities, or (f) Requirements for Delivery of Documents

[20].

• Software developed for the European Space Operations

Center (ESOC) must also meet requirements defined in

several sources: (a) tailoring of ECSS-E-ST-40C for

space engineering—software [21], (b) tailoring of

ECSS-Q-ST-80C for space product assurance—soft-

ware product assurance [22], (c) tailoring of ECSS

Software Engineering Standards for Ground Segments

in ESA. Part A–D(**) (BSSC 2005(1) [14], (d) ESOC

Generic Ground Systems: Development Requirements

Specification [24], or (e) Software Quality and Coding

Rules [23].

This can be considered an information overload prob-

lem: In addition to the complexity of the technical and

functional requirements, staff needs to be aware of a large

set of process requirements scattered throughout different

documents. This may be error-prone, and there is a risk of

missing information and producing deliverables that does

not meet all the required constraints. Inadequate access to

information has a negative impact on productivity, and

errors can be made because of missing information. The

omission of activities, tasks, and controls requested by

applicable process requirements can also lead to erroneous

estimations of effort and compromise the reliability of

implementation.

To deal with this problem, organizations must answer

these questions:

(a) How can we ensure that involved people are aware

of all the applicable requirements?

(b) How can we ensure that work products respect all

the constraints?

(c) Are we sure we are doing the tasks as requested?

This paper describes the implementation of a tool that

offers a single point of access to corporate guidelines,

industry, and customer process requirements. The tool—

built on top of the semantic wiki (SMW) content man-

agement tool—uses the software process engineering

metamodel (SPEM) language to represent processes,

activities, tasks, and work products where requirements are

allocated. Besides improving access to process require-

ments, the proposed solution contributes to organizational

maturity, as it helps companies adapt their processes to

fulfill the needs of different projects [2]. The conceptual

basis of this solution is related to the proactive manage-

ment of work context and contextual information.

2 Objectives of research

The objective of this research is to build a framework for

improving access to software process requirements by

using, as inputs, problem statements identified through

individual interviews with staff working in a software

development company.

The main research hypothesis is that a clear contextu-

alization of the software process requirements within tasks,

activities, and deliverables allows staff to gain a better

understanding of the software development process they

need to follow. The systematic tagging and classification of

process requirements will improve engineers’ capability of

working with complex sets of requirements coming from

different sources.

The model, and the tool developed for its validation, has

been built on top of the ISO/IEC 29110 international

standard for software development. Processes defined in

this standard have been used to build an exemplary context

where process requirements may be allocated. ISO/IEC

29110 could be replaced by other process models to

accommodate the needs of different organizations. The

model extends the SPEM metamodel and incorporates

additional items to manage process requirements and base

practices.

The rest of the paper is structured as follows: In

Sect. 3, the research methodology is described; Sect. 4

discusses the role of context in software development

activities; Sect. 5 describes the construction of the

activity context model and the proposed implementation

for a demonstrator; Sect. 6 describes the validation of

the proposal; and Sect. 7 summarizes the research

conclusions.

3 Research methodology

Research has been conducted using the action research

methodology, the purpose of which is to influence or

modify some aspects of the object or situation under study.

Action research combines observation and action to pro-

pose and implement improvements with the commitment

of the target organization [62, p. 170]. Research was

completed in a six-month period in the context of an

aerospace company located in Madrid, Spain, with sub-

sidiaries spread in different European countries and North

America.

528 Requirements Eng (2017) 22:527–542

123



www.manaraa.com

The research process has been structured in these steps:

(a) First, an analysis of the current situation was done,

focused on the complexity of applicable software

process requirements in two representative projects.

The process requirements’ complexity is mainly due

to the large number of applicable requirements and

guidelines in critical sectors (aerospace, automotive,

and medical software) and because they are usually

spread throughout different documents. Some metrics

have been proposed to measure the complexity of

process requirements, like design constraints imposed

[68]; metrics defined for measuring process complex-

ity might also be applied, like those described in

Kluza et al. [39]. The analysis of process requirements

was done by direct observation, interviews, and the

analysis of applicable standards.

(b) Second, an extension of the SPEM metamodel was

defined to incorporate process requirements and

guidelines, their properties, and generate an onto-

logical representation that allows the use of these

elements to organize requirements’ data.

(c) Third, an implementation was done using a popular

contentmanagement tool—semanticwiki—with exist-

ing, real data. The implementation put software process

requirements within the context of the different tasks

that staff should execute in a typical project.

(d) Finally, the validation of the approach was con-

ducted by means of interviews and focus groups with

staff involved in different projects. During the

implementation period, the approach was continu-

ously assessed and refined with feedback provided

by the staff involved in the research project.

4 Contextual information for software
development activities

One key element in the research methodology was the

identification of questions related to the information needs

of the target users, through direct observation and inter-

views. Typical questions included: (a) those related to the

traceability between information items to assess the impact

of changes, and (b) those related to the quality character-

istics and expected content of the project deliverables.

From these types of questions, it was possible to charac-

terize the contextual information software developers must

know to ensure the quality of the process.

4.1 Context in software engineering

The meaning of context in software engineering is usually

restricted to the context in which the target system will be

used. Software engineering practices recognize the need of

understanding and modeling the end-user and system

operations’ context [9], and different techniques have been

proposed in the professional literature to achieve this

objective [3, 27]. Besides this restricted meaning of

‘‘context,’’ software engineering should consider the con-

text in which managers and engineers complete develop-

ment and maintenance activities. Context is defined as ‘‘the

set of all events and information, which can be observed or

interpreted during knowledge work, except those events

and pieces of information that constitute the change’’ [49].

A simpler, pragmatic definition adopted in this study refers

to ‘‘the set of rules and constraints that need to be known to

do a task or generate a deliverable with success.’’ This

definition is closer to the use of ‘‘context’’ in business

process modeling standards like IDEF0, where context

diagrams include the processes’ activities and the rules and

guidelines that govern their execution in the form of con-

trols and mechanisms [12].

The big number of process requirements established by

standards defined for critical domains (aerospace, auto-

motive, or biomedical) constitutes an information overload

problem [26, 77]. Management of contextual data is one of

the main approaches for dealing with this challenge.

However, which data sets constitute the context that soft-

ware engineers need to manage? Interviews conducted with

software developers working on two different projects

identified three types of ‘‘contextual information’’:

(a) technical context, (b) organizational context, and

(c) activity context.

Technical context refers to the functional and non-

functional requirements that must be implemented in the

software product. It also includes data about known issues,

their status (requested, accepted, answered, implemented,

etc.), and the planned evolution of the product: engineering

change requests (ECRs), product roadmap, planned fea-

tures, future versions, etc. Technical context is usually

managed by means of traceability data, configuration, and

change management tools supporting impact analysis.

Technical context gives answers to questions like:

• I need to update this module: Which regression tests do

I need to execute?

• Are there any planned changes in the module I need to

update?

• What are the source code files that are going to be

affected by these changes in design?

• If this source code file is updated, which validated

requirements may be affected?

Organizational context refers to the rules that govern the

team organization: decision escalation processes, staff and

role responsibilities, and customers’ and colleagues’

expectations. Organizational context is usually managed

Requirements Eng (2017) 22:527–542 529

123



www.manaraa.com

with the help of workflow and notification systems that

raise alerts when activities are done and distribute tasks

accordingly. Continuous integrative environments play an

important role in task automation. Organizational context

data give answers to questions like:

• Who should know about the changes I am

implementing?

• Has V&V staff been notified of the completion of the

task, so they can start their activities?

• Who must review and approve the changes we propose

to fix this problem?

• Who must execute the regression approach after the

implementation of these changes?

Activity context refers to the list of tasks to do during the

project life cycle, their purpose and objective, expected

input and outputs, and the rules to follow. Activity context

is usually managed by means of descriptions of processes,

work packages, activities, tasks, and work products. The

contextual data gives answers to questions like:

• What are the tasks the team has to complete?

• What is the sequence to follow?

• What are the inputs needed to do these tasks?

• What are the expected outputs?

• What is the expected content of the outputs?

These questions are mainly related to activities, tasks, or

work products. In other words, it is feasible to use the

activities, tasks, and work products defined in the reference

process model used to put process requirements into con-

text. These requirements act as: (a) ‘‘drivers’’ for the

planning and completion of activities and work products,

and (b) verification criteria to ensure that tasks and work

products are done as expected.

The relationship between the types of contextual data

and software requirements can be summarized as follows:

(a) technical context is clearly related to product functional

and non-functional requirements, (b) organizational con-

text is related to requirements that govern the assignments

of responsibilities to roles and workflow rules, (c) activity

context depends on process requirements. This document

deals with the third type of contextual data, activity con-

text. This approach may be traced to previous research: For

example, the role given to deliverables in activity context

may be related to the artifact-based requirements engi-

neering approach described in recent studies [52].

4.2 Activity context

The relationship between activity context and software

process models is clear: Process descriptions not only

provide companies with the list of processes, activities,

tasks, inputs, and outputs, they constitute the basis for

project planning and can be used as templates that are

instantiated when a new project starts.

Software process models give companies guidelines

on how to complete projects using well-defined,

proven methods, tasks and activities. […] They

include descriptions of activities, their inputs and

outputs, the flow of data and control, the techniques,

methods, tools and roles. [53]

Process requirements should be incorporated into the

process models as constraints. Companies implement dif-

ferent process models, which are usually said to be the

sources of their competitive advantage and the reason

behind their performance. This traditional view is chal-

lenged by the fact that most corporate process models are

based on standards like ISO/IEC 12207 or ISO/IEC 29110.

Usually, companies make an adaptation of these standards

by choosing a subset of their processes, tasks, and activities

according to well-known tailoring guidelines. As a result, a

high degree of commonality may be observed: Corporate

models include processes like requirements elicitation,

architectural design, interface definition, coding and unit

testing, software integration, and the main differences are

not found in the processes’ definition, but on their capa-

bility (i.e., predictability).

Similarities can also be observed in work products.

Industrial standards request similar work products (re-

quirements specifications, design documents, test specifi-

cations, verification reports, installation, configuration

reports, etc.) and content guidelines. As an example, a

comparison of the work products requested by ISO/IEC

29110 with those requested by GSWS shows minor dif-

ferences: GSWS includes three additional work products

(SCAR, SAR, and PSJF)—two of them required for real

time and critical software—and separate plans for project,

configuration, product assurance, and V&V management

(instead of a common plan).

The fact that different companies follow process models

with a high degree of similarity led us to consider the

feasibility of using a standard process model as the basis

for building the activity context. ISO/IEC 29110 ‘‘Software

engineering—Lifecycle profiles for Very Small Entities

(VSEs)’’ was chosen as a reference. This standard provides

organizations with a prescriptive process model adapted to

the needs of VSEs (very small entities). The basic profile

establishes two processes—project management (PM) and

software implementation (SI)—with their activities, tasks,

inputs, outputs, and roles. This standard offers SMEs

guidelines on how to develop software and a reference to

conduct improvement plans. The importance of ISO/IEC

29110 has been widely discussed in the professional liter-

ature [43, 44, 56, 60, 61]. The possibility of tailoring the

processes defined in this standard is possible. In fact, it is

530 Requirements Eng (2017) 22:527–542

123



www.manaraa.com

expected that companies adopting ISO/IEC 29110 will

make some kind of adaptation, emphasizing those tasks

that add more value to their business and incorporating

additional practices, tools, and methods [6]. As an exam-

ple, the process model can be applied to different life

cycles (waterfall, incremental, etc.) or adapted to agile

practices; in some cases, companies can provide a more

detailed definition for some activities or work products

(e.g., adding references to the tools, templates, or tech-

niques used to execute the task).

5 Model construction and implementation

Based on the premises described in the previous section, a

model was developed as an extension of the SPEM meta-

model for software development processes. The model

establishes a general framework that allows the encoding

and representation of multiple process descriptions and

requirement sets. ISO/IEC 29110 was used as a reference

to model an exemplary process.

5.1 SPEM and ISO/IEC 29110 as foundations

SPEM, a MOF-based metamodel and conceptual frame-

work published by the Object Management Group (OMG),

establishes the concepts and notations to represent,

exchange, publish, and enact processes. Its scope includes

‘‘the minimal elements needed to define any process and

accommodate a large range of development methods and

processes of different styles, cultural backgrounds, levels

of formalism, life cycle models, and communities.’’ [57].

SPEM makes a distinction between processes and method

content. Method content corresponds to reusable items that

may be used in the definition of processes: tasks, work

products, roles, and categories. These items are related:

Roles participate in tasks that generate or consume work

products; categories are used to classify method content

items, etc. Method content can be reused, organized, and

sequenced in different ways to support alternative scenarios:

waterfall, agile, incremental, etc. To leverage reuse capa-

bilities, method content may be customized without chang-

ing the definition of the base, reused item. Method content

items are combined using activity diagrams or breakdown

structures to form processes or higher-level activities. Two

types of processes are distinguished: delivery processes and

capability patterns. The first one corresponds to end-to-end

process templates, and the second one to sub-processes or

process fragments that may be later assembled to build

delivery processes. SPEM also introduces the concept of

phases, iterations, and milestones.

This standard metamodel offers the elements needed to

build an ontology with the different items needed to build

the activity context. The decision to use SPEM to represent

the software development characteristics is due to the fol-

lowing factors:

(a) SPEM is a recognized standard for software process

modeling and representation. Like other process

modeling languages, SPEM allows the homogeneous

description of process languages using a graphical

notation.

(b) There are other software process metamodels that

could be used as a reference: Open Process Frame-

work (OPF),1 Software Engineering Metamodel for

Development Methodologies (SEMDM) [36],

Microsoft Solution Framework (MSF) [73], or the

German standard V-Modell XT [72]. The decision to

use SPEM was due to the following factors:

(a) SPEM is an open standard managed by a

recognized standardization body, the Object

Management Group (OMG) that is also

responsible for the widely adopted Unified

Modeling Language (UML).

(b) SPEM includes a complete graphical notation

to represent processes and activities at differ-

ent levels of detail (from diagrams showing

the process overview to specific activity

diagrams). Graphical notations used in SPEM

correspond to well-known, widely used dia-

gramming guidelines, like UML activity dia-

grams or process diagrams used in the

Rational Unified Process (RUP). This means

that software engineers can work with dia-

gramming notations that are familiar.

(c) Other alternatives not only provide the soft-

ware process metamodel, but a repository of

specific activities and work products. SPEM

focuses on the metamodel definition, the rules

to represent processes made up of any kind of

activities, tasks, and work products, and their

graphical representation. This gives the flex-

ibility to represent any arbitrary software

development process, e.g., those based on

ISO/IEC 29110, RUP, OpenUP, or any other

one.

(d) SPEM is supported by a wider number of

tools, including the open source Eclipse

Process Framework (EPF) and commercial

tools like Sparxsystems Enterprise Architect,

Osellus IRIS, or Objecteering.

(e) SPEM is widely used and accepted by the

industry [63] and is highly visible in the

professional and academic literature [66].

1 See http://www.opfro.org/. Last visited 25/03/2016.

Requirements Eng (2017) 22:527–542 531

123

http://www.opfro.org/


www.manaraa.com

The possibility of building ontologies using the SPEM

metamodel as an input has already been discussed by

Aoussat et al. [4] for software process reuse, Liska and

Navrat [47] identified the value of SPEM to improve the

weaknesses of software process notations described in the

SWBOK, and Gazel et al. [28] took SPEM as an input for

building a tool to guide CMMI assessments. In this

research, the SPEM model was extended to support the

ontological representation of the process requirements (see

Fig. 1). Individuals or instances for the ontology were

taken from the basic profile of the ISO/IEC 29110 standard,

building a process representation with a minimum set of

elements that can be later expanded and mapped to cor-

porate process models.

Once the activity context (process, activities, tasks, and

work products) is established, companies have at their

disposal a framework where process requirements may be

allocated to activities, tasks, and work products to provide

staff with:

(a) A single point of access to the process requirements

scattered across several documents.

(b) A detailed, complete view of the set of constraints to

consider when doing a task or generating a work

product.

The allocation of process requirements extends the

process model (activities, tasks, and work products) with

the applicable constraints. For example, the standard may

request the regular reporting of the project status to the

project’s stakeholders; this general task may be affected by

particular customer requirements imposing constraints on

the frequency of the reports, the layout to use, or the data

that need to be provided.

5.2 Specification of the demonstrator

To assess the feasibility of the approach in practical terms,

a demonstrator was developed with real data provided by

the company. The target solution was expected to achieve

these objectives:

• Provide a single point of access to all the applicable

process requirements.

• Put requirements into context, by linking them to the

tasks and work products on which they have an impact.

• Support the definition of corporate processes and its

mapping to existing standards.

• Support collaborative work around requirements: anno-

tations, attach evidences, etc.

• Visual representations of the processes.

• Easy access for all the staff involved in the project,

avoiding complex learning curves.

• Possibility of creating ‘‘ad hoc’’ queries.

• Incorporation of additional criteria for cataloging

process requirements like criticality, systematic reuse.

It is remarked that the proposed solution does not have

the aim of managing traceability between work products

(e.g., between requirements and design elements, and

requirements and test cases), as this type of traceability is

part of the technical context of the solution; the purpose of

the solution is to deal with the activity context, related on

how to build the solution from a process perspective.

Figure 2 shows the main use cases defined for the

demonstrator.

The planned functionality required the adoption of a

content management tool. An efficient solution for

managing access to process requirements must support

Fig. 1 Fragment of the

ontology for encoding

requirements data

532 Requirements Eng (2017) 22:527–542

123



www.manaraa.com

collaboration and content edition features. Process

requirements may be subject to interpretation, and addi-

tional data need to be gathered to record how requirements

were interpreted in previous projects, or what kind of

evidence is needed to demonstrate their achievement. In

other words, access to process requirements may be enri-

ched with additional comments, explanations, and sample

evidence. To handle this content, it is necessary to set up a

collaborative workplace supporting distributed data col-

lection and discussion around requirements.

A trade-off analysis was performed to assess several

content management tools (CMS). Among these tools,

semantic wiki (SMW) was chosen. SMW is a content

management platform that extends the functions of stan-

dard wiki sites with the capability of adding properties and

metadata to pages and links. These properties may be used

to tag content and make its meaning explicit.

The decision to adopt SMW was guided by the tool’s

capabilities:

• Support to standard ontological knowledge representa-

tions with classes, properties, and individuals.

• Ingestion of data encoded in XML, and the capability

of exchanging data with process modeling tools.

• Easy incorporation of users’ contributions in the form

of annotations.

• Wide adoption in the collaboration and knowledge-

sharing strategies of many companies, including large-

scale collaborative platforms [33].

• Low complexity, adoption, and deployment costs.

SMW features may be summarized as follows:

• Categories and properties. Properties work as an

extension of MediaWiki Categories to classify and tag

data items. Properties define the semantics of the data

and the relationships between data items.

Properties are not predefined, so it is possible to define

and use different properties and metadata. There are

initiatives to propose a common set of properties for

tagging semantic wiki content, like SWiVT; but the

capability of defining custom properties and establish-

ing equivalences with properties defined in other

schemas offers the possibility of reusing vocabularies

and ontologies already defined in the software engi-

neering field [8, 70, 74].

• Semantic browsing, searching, and data discovery.

Once the wiki content has been tagged with properties,

these metadata can be exploited in different ways. For

Fig. 2 Use cases supported by

the tool

Requirements Eng (2017) 22:527–542 533

123



www.manaraa.com

example, ‘‘factbox’’ summarizing property values. By

using the properties, users can navigate and locate

items matching specific constraints. For example,

properties can be used to search: (a) requirements

related to specific tasks and work products, (b) work

products used as inputs or outputs of tasks, or (c) tasks

to be completed by a particular role. A sample search

run using properties is shown below:

[[Category:WorkProduct]]

[[usedAsInputFor::TestDesign]]

• Hierarchical arrangement of classes (types of items)

and properties. Using generalization/specialization and

‘‘is part of’’ relationships. Hierarchies are needed to

expand and restrict searches.

• Inline queries and concepts. These are dynamic queries

embedded in wiki pages that filter and display the

information on individuals and resources matching a

specific set of constraints.

The benefits of SMW have been largely discussed in

contexts characterized by a rapid evolution of knowledge

[45]. Professional literature reports a variety of projects

where SMW has been used to support knowledge-intensive

processes in areas like: biomedical engineering [32], medi-

cine [51], earth sciences [29, 50], emergency management

[7], product design [34, 58, 76, 78], or innovation manage-

ment [13, 42]. Conclusions of these reports demonstrate that

SMW has become one of the preferred choices to support

knowledge management in the extended enterprise [37, 41],

collaboration around business process [54], and new forms

of cooperation based on social web technologies [64, 67].

Software engineering literature also reports experiences

with SMW to support development activities: Happel and

Seedorf [31] proposed the use of the Ontobrowse ontology

and semantic wiki to align knowledge needs of developers

and software architects when describing software archi-

tecture. In the context of agile practices, Rech and Bogner

[59] included wikis as one of the ‘‘human-centered

knowledge-sharing platforms’’ suitable to support knowl-

edge management in software development. The use of

SMW to build a library catalog and organize project doc-

umentation was identified by Ribaud and Saliou [60, 61]

and Baumeister et al. [5]; De Graaf [11] with his Archi-

Mind system and Tang et al. [71] showed the benefits of

using SMW as a collaborative platform for managing

software documentation, and Kleiner et al. [38] demon-

strated the potential of SMW on incident and configuration

management. The feasibility of SMW to support computer

science learning and teaching was analyzed by Coccoli

et al. [10]. Greaves [30] highlighted the value of the

experience acquired in the deployment of SMW-based

solutions to deal with the complex requirements of soft-

ware for collaborative sense-making environments.

In the specific area of requirements engineering, Abeti

et al. [1] developed WikiReq to support distributed

requirements elicitation and requirements-centered dis-

cussions in business process reenginering projects. Liang

et al. [46] proposed the use of SMW to support the analysis

of requirements by distributed teams in large-scale pro-

jects, taking advantage of the SMW reasoning capabilities.

In a similar approach, Nordheimer et al. [55] discussed the

benefits that small and medium enterprises can obtain with

the deployment of SMW to document requirements,

architectural design, and keep traceability between them.

Other contributions that discussed the use of SMW to keep

functional and product requirements are those from Ma

et al. [48], who proposed a metamodel to support consis-

tency checks, and Sillaber et al. [69], who designed a

platform to deal with the problems derived from the

coexistence of different platforms for requirements elici-

tation. Stateli’s ReqWiki platform [65]—an open source

solution suitable for small and midsize software compa-

nies—incorporated natural language processing to improve

the specification of requirements. A practical experience in

the aerospace domain is provided by Favaro et al. [25] with

its description of the NextGenRE project, sponsored by the

European Space Agency (ESA), where SMW was selected

for the collection of structured requirements and the

implementation of coherence checks.

5.3 Architecture of the target solution

The proposed solution is built on top of SMW, which is

based on the PHP programming language. SMW extends

MediaWiki software by adding additional tables to the

database repository (SQL store), a SPARQL store to

support semantic queries, and additional hooks to allow

developers to extend the standard functionality and use

SMW data from external tools. From a functional per-

spective, in SMW, a distinction is made between: (a) an-

notation components (for content editing and manual

tagging), (b) dynamic page components (for data brows-

ing and the generation of display formats), (c) querying

and searching components, (d) external interfaces for data

import/export components and, (e) maintenance tools

[40].

The target solution needs to incorporate the following

items:

(a) A set of process configuration files (PCFs) to

describe the process items (activities, tasks, work

products, etc.) used to contextualize the process

requirements. The PCFs will have separate data

items for each process item. These items shall be

tagged with the SPEM metadata defined by the

process analyst.

534 Requirements Eng (2017) 22:527–542

123



www.manaraa.com

(b) A software component (PCFs import) to process XML-

encoded SPEMmodels, generate the PCFs in a format

suitable for SMW, and inject them into the SMW

database. This component’s responsibility includes the

incorporation of inline queries into the PCFs.

(c) A software component (ReqsImport) to generate

content pages for process requirements, tag them

with their related tasks, work products and other

information, and inject them into the SMW database.

(d) A dictionary to support the automatic tagging of

process requirements and classify them by activity,

task, and work product. The dictionary contains

equivalent and related terms for each process

element (activity, tasks, and work product). The

dictionary is kept in a separate XML file, out of the

SMW database.

Components (b) and (c) make use of XSLT stylesheets

to convert input data generated from the Eclipse Process

Framerwork, MS Word, or IBM DOORS into an HTML

format suitable for being imported into SMW. They also

use SMW batch import capabilities for loading the data

into the SMW database. ReqsImport component makes use

of an external web service for term extraction: Alche-

myAPI.2 This parser has shown good performance in the

extraction of compound terms, made up of several words

[75]. Extracted terms are used as an input to classify

requirements by activity and work product by matching

them with the terms in the dictionary.

Figure 3 shows the main items in the solution

architecture:

5.4 Implementation of the demonstrator

The implementation followed these steps:

• Creation of a visual representation of the ISO/IEC

29110 Basic Profile’s processes using the SPEM

notation, including the descriptions provided in the

standard.

• Task and work products defined in ISO/IEC 29110

were tailored to the corporate needs of the company

using the SPEM extension and customization capabil-

ities. The resulting diagrams and related content were

uploaded into the SMW site.

• Process requirements from customer and industry

standards—as well as individual base practices from

the corporate procedures—were stored as independent

content units in the SMW site. These requirements were

also tagged with the identifiers of tasks and work

products. The terms extracted from the requirement

descriptions were compared with those in the dictionary

to deduce which task and work product should be used

to tag the requirement. Automatic tagging showed a

correctness close to 76 %. For those requirements

where it was not possible to identify one related task or

work product, a TBC value was used, to allow their

later identification and manual tagging. Additional tags

were used to indicate the projects where the standards

were applicable and the source document where they

are defined.

Figure 4 shows a schema with the main activities in the

implementation process.

During this process, SMW features were used:

1. Import capabilities for loading the ontology containing

the process model and the process requirements into

SMW. The ontology constituted the context where

process requirements were later allocated.

Import capabilities also made it possible to load sets of

process requirements. For each requirement, a separate

SMW page was created, containing its orthogonal

categorization using the ontology’s properties:

workProduct, developmentTask, criticalityLevel, etc.

Preprocessing of the documents containing the process

requirements was needed to generate a valid XML

suitable for SMW (Fig. 5).

2. SVG representations of the processes were created in

order to have a visual map to explore and browse the

content of the SMW site (Fig. 6).

3. Content editing capabilities were used to incorporate

changes into the process elements descriptions and

requirements pages after bulk upload/import.

4. Inline queries were incorporated into the pages corre-

sponding to tasks and work products. These queries

retrieve, in a dynamic way, the requirements tagged

with the identifiers of those tasks and work products.

The fragment below shows an example of an inline

query (Fig. 7):

5. Subqueries on categories were used to deal with

generalization and specialization of classes, and to

{{ #ask: [[Category:Requirement]] [[activity::SI_3_4]]
.dI.qeR=lebalniam|
noitpircseD=noitpircseDtnemeriuqer?|
ecruoS=ecruoStnemeriuqer?|

}}

2 See http://www.alchemyapi.com/. Last visited on 23/03/2016.

Requirements Eng (2017) 22:527–542 535

123

http://www.alchemyapi.com/


www.manaraa.com

Fig. 3 Proposed architecture

Fig. 4 Implementation process

536 Requirements Eng (2017) 22:527–542

123



www.manaraa.com

group together the specializations for a given concept.

As an example, this query extracts the requirements

allocated to the different types of test reports:

6. Collaborative development of content. As an open,

distributed solution for content management, users are

able to add annotations to any item in a controlled way.

Fig. 5 Process requirement’s

metadata

Fig. 6 Graphical representation

of activities

[[Category:WorkProduct]] [[isSpecializatioOf::TestReport]]

[[Category:Requirement]] [[workProduct::<q>[[Category:WorkProduct]] 
[[isSpecializationOf::TestReport]]</q>]]

Requirements Eng (2017) 22:527–542 537

123



www.manaraa.com

6 Validation and threats to validity

The proposed solution and its SMW-based implementation

was verified and validated in the context of the participant

company.

In addition to the verification of the requirements

derived from its use cases (see Fig. 2), the tool validation

was done through nine individual interviews (after direct

observation of the users working with the tool) with staff

playing engineering and management roles in different

projects. Participants included four senior developers, two

verification and validation engineers, two project man-

agers, and one configuration manager. Validation aimed to

check the feasibility of using the tool to give answers to

common information needs related to process require-

ments. The staff who were interviewed were challenged to

use the SMW site to answer typical questions they face in

their daily activities:

• What content is expected for a particular document or

deliverable?

• Is there a requirement on how to conduct particular

activities (e.g., reporting, unit testing)?

• What is the format and delivery method for distributing

the software and related documentation?

• What are the expected diagrams that need to be

included in the design documentation?

• Which coding standards need to be enforced?

• What milestones should be delivered from a specific

document?

• What is the source code coverage that is critical for a

particular software?

• What deliverables should not be produced for a specific

technical review when we are following a specific

software life cycle (waterfall, incremental…)

• Which inspections and verification must be done when

preparing the software acceptance?

• What records must be generated to provide evidence of

the execution of a specific task?

• In which reports should I include the status of a specific

type of item (software problems, risks, actions…)

To conduct validation testing, two data sets were cre-

ated: one for the process requirements of the Galileo

satellite constellation program, with a total of 3513

requirements, and another one for ESOC requirements,

with a total of 2123 process requirements. Participants

were not familiar with the process requirements in the

sample data sets. They used the search and navigation

features offered by SMW to answer those questions, assess

the usefulness of the tool, and identify potential improve-

ments. After completion of the exercise, participants were

asked to answer a questionnaire with twelve questions

related to one of the following assessment criteria:

(a) Information findability (to what extent does it help

users find the required information);

(b) Information comprehension (to what extent does the

tool help in understanding the data and putting it into

context);

Fig. 7 Inline query showing

requirements allocated to task

538 Requirements Eng (2017) 22:527–542

123



www.manaraa.com

(c) Content editing capabilities (to what extent can users

contribute with additional information, annotations,

and tagging);

(d) Collaboration support (to what extent does the tool

leverage team collaboration and knowledge reuse

opportunities);

(e) Usability and interactivity of the tool.

Figure 8 shows the results of the average score given by

the participants to the criteria:

The answers to the questionnaires were later discussed

in a short meeting, and the results were presented to all the

participants in a separate session. Conclusions can be

summarized as follows:

• The proposed solution was recognized as a valuable

tool to reduce the complexity of dealing with the

process requirement sets applied in the aerospace

industry. The possibility of finding information quickly

and the fact that information is shown in the context of

the tasks where it is needed was the most valued

feature.

• The conceptual arrangement of requirements, classified

by process, activities, tasks, and work products defined

in the frame of an ontology, was judged of interest in

dealing with the diversity of terms and acronyms used

in different standards and guidelines.

• Semantic wiki’s user-friendliness and its low learning

curve were also considered to be beneficial. This

includes the easy addition and tagging of content. Four

participants remarked the need to establish controls to

ensure that requirements are properly tagged.

• Collaboration support was valued as a positive feature,

although participants gave this criterion the lowest

score. Interviews demonstrated that the tool was

perceived as a static repository of process requirements,

a place to easily find the rules and constraints that

should not be overlooked. But the possibility of using it

as a collaboration platform was considered of sec-

ondary value.

The assessment of the proposed tool can be considered

successful, but there are still some validity concerns. The

main one is related to the performance of the classifier in

charge of automatically tagging the requirements.

Although the proposed approach (matching key terms with

terms in a dictionary) provided satisfactory results, the

automatic tagging of all the requirements was not achieved,

and some of them needed to be tagged manually. Different

approaches can be explored to overcome this limitation,

e.g., using term similarity between requirements to assign

the same tags, or include in the tagging process additional

information like the sections’ and subsections’ titles where

the requirements are located in the source documents. In

any case, even if the tagging process requires some manual

intervention, the benefits and time savings that can be

achieved justify this additional work.

Another concern is related to the portability of the

solution to companies or projects using a different software

process model. In the case study, the ISO/IEC 29110 has

been used as a reference, but the proposed approach can be

easily applied to any other scenario using a different soft-

ware process model. The flexibility of the SPEM modeling

language and its openness to represent any process model

ensures this portability.

A final concern was related to the cost of setting up the

proposed solution. The trade-off between the implemen-

tation costs and the solution benefits (time savings when

looking for information and exhaustiveness of data) was

discussed with the validation team. Costs were considered

justified in the case of long-term contracts and programs

that impose common process requirements to different

projects: a habitual situation in the aerospace industry.

7 Conclusions

Standards like ISO/IEC 29110 or ISO/IEC 12207 provide

companies with process descriptions that may be used to

establish tailored processes. But software development

companies need to combine their internal process guideli-

nes with additional requirements coming from their cus-

tomers or industry-specific standards. The activities, tasks,

and work products defined in the corporate processes

constitute the activity context where process requirements

must be understood, applied, and verified. Process

requirements are usually spread through different specifi-

cations and documents provided by the client as part of the

tender conditions or the statement of work. Dealing with

requirements documented in different sources implies the

risk of disregarding relevant information. This complexityFig. 8 Results of the assessment

Requirements Eng (2017) 22:527–542 539

123



www.manaraa.com

makes access to information difficult and has a negative

impact on productivity.

This paper proposes an approach to aggregate, represent,

and give access to complex sets of process requirements. Built

on top of the SMW content management platform, staff

involved in software development are given a single point of

access where they can search and identify the constraints that

must drive the execution of the tasks and the generation of

work products. Processmodels are needed to put requirements

into context. When working on a specific deliverable or task,

engineers can easily get the list of requirements that need to be

considered and get a clear understanding of all the applicable

constraints. The tool can also be used to ensure an adequate

assessment of work products with respect to the expected

characteristics. The approach has been validated with the

implementation of a demonstrator. Participants recognized

that it was a useful solution to avoid missing relevant infor-

mation and ensure compliance with both internal and external

process requirements.

References

1. Abeti LA, Ciancarini PB, Moretti RB (2009) Wiki-based

requirements management for business process reengineering. In:

International conference of software engineering, pp 14–24

2. Alexis O (2009) Rationale modeling for software process evo-

lution. Softw Process Improv Pract 14(2):85–105

3. Ali R, Dalpiaz F, Giorgini P (2010) A goal-based framework for

contextual requirements modeling and analysis. Requir Eng

15(4):439–458

4. Aoussat F, Oussalah M, Ahmed M (2014) A spemontology for

software processes reusing. Comput Inform 33(1):35–60

5. Baumeister J, Reutelshoefer J, Puppe F (2011) KnowWE: a

semantic Wiki for knowledge engineering. Appl Intell

35(3):323–344

6. Boucher Q et al (2012) Towards configurable ISO/IEC

29110-compliant software development processes for very small

entities. In: Winkler D, O’Connor R, Messnarz R (eds) Systems,

software and services process improvement, Springer, Berlin,

Heidelberg, pp 169–180

7. Caglayan A et al (2012) Semantic technologies for civil infor-

mation management during comlex emergencies. In: IEEE

international conference on technologies for homeland security,

HST, pp 523–528

8. Calero C, Ruiz F, Piattini M (eds) (2006) Using ontologies in

software engineering and technology. In: Ontologies for software

engineering and software technology. Springer, Berlin,

pp 49–102

9. Cherry C, Macredie RD (1999) The importance of context in

information system design: an assessment of participatory design.

Requir Eng 4(2):103–114

10. Coccoli MA, Vercelli GA, Vivanet GB (2013) Semantic Wiki for

learning and teaching computer science. J E-Learn Knowl Soc

9(2):173–183

11. De Graaf KA (2011) Annotating software documentation in

semantic wikis. In: International conference on information and

knowledge management, pp 5–6

12. Eito-Brun R (2004) El contexto de la información. Herramientas

y útiles para el proceso de auditorı́a. El Profesional de la Infor-

mación 12(4):302–312

13. Elkaffas SM, Wagih AS (2013) Use of semantic wiki as a cap-

turing tool for lessons learned in project management. In: Pro-

ceedings of teh 2013 science and information conference, SAI,

pp 727–731

14. ESA (2005) Tailoring of ECSS software engineering standards

for ground segments in ESA. Part A–D(**) BSSC 2005(1)

15. ESA (2009a) Galileo software standard (GAL-SPE-ESA-SYST-

0092). Issue 1.1

16. ESA (2009b) Galileo FOC product assurance and safety

requirements (GAL-REQ-ESA-GMS-X/0104). Issue 1.0

17. ESA (2010) Galileo FOC—system verification requirements

document (GAL-REQ-ESA-SYST-X-0017). Issue 1.2

18. ESA (2011a) Galileo FOC management requirements (GAL-

MGT-ESA-SYST-X/0001). Issue 2.2

19. ESA (2011b) Galileo FOC configuration and data management

requirements (GAL-MGT-ESA-SYST-X/0002). Issue 3.1

20. ESA (2013) Requirements for delivery of documents to ESA

(GAL-REQ-ESA-SYST-X/0073). Issue 1.2

21. ESA-OPS (2009a) Tailoring of ECSS-E-ST-40C for space engi-

neering—software (QMS-EIMO-GUID-CKL-9500-OPS). Issue

1.0

22. ESA-OPS (2009b) Tailoring of ECSS-Q-ST-80C for space pro-

duct assurance—software product assurance (QMS-EIMO-

GUID-CKL-9501-OPS). Issue 1.0

23. ESOC (2006) Software quality and coding rules (EGOS-QA-XX-

TN-9007). Issue 1.4

24. ESOC (2008) ESOC generic ground systems: development

requirements specification (EGGS-ESOC-GS-SRS-1001). Issue

1.1.1

25. Favaro JA et al (2012) Next generation requirements engineering.

In: 22nd annual international symposium of the International

Council on Systems Engineering, INCOSE, vol 1, pp 479–507

26. Freund L, Toms EG, Waterhouse J (2005) Modeling the infor-

mation behaviour of software engineers using a work—task

framework. In: Proceedings of the American Society for Infor-

mation Science and Technology, vol 42(1). doi:10.1002/meet.

14504201181

27. Fuentes-Fernández R, Gómez-Sanz J, Pavón J (2010) Under-

standing the human context in requirements elicitation. Requir

Eng 15(3):267–283

28. Gazel S, Sezer EA, Tarhan A (2012) An ontology based infras-

tructure to support CMMI-based software process assessment.

Gazi Univ J Sci 25(1):155–164

29. Gordon SN et al (2014) Studying the use of forest management

decision support systems: an initial synthesis of lessons learned

from case studies compiled using a semantic wiki. Scand J For

Res 29:44–55

30. Greaves M (2014) Wikis, semantics, and collaboration: sympo-

sium on collaboration analysis and reasoning systems, at the 2014

conference on collaboration technologies and systems. In: Inter-

national conference on collaboration technologies and systems

(CTS), pp 469–471. doi:10.1109/CTS.2014.6867607

31. Happel H, Seedorf S (2007) Ontobrowse: a semantic Wiki for

sharing knowledge about software architectures. In: 19th inter-

national conference on software engineering and knowledge

engineering SEKE, pp 506–512

32. He S et al (2009) Collaborative authoring of biomedical termi-

nologies using a semantic wiki. In: AMIA symposium,

pp 234–238

33. Herzig DM, Basil E (2010) Semantic MediaWiki in operation:

experiences with building a semantic portal. In: Lecture notes in

computer science, 6497, pp 114–128

540 Requirements Eng (2017) 22:527–542

123

http://dx.doi.org/10.1002/meet.14504201181
http://dx.doi.org/10.1002/meet.14504201181
http://dx.doi.org/10.1109/CTS.2014.6867607


www.manaraa.com

34. Huang YA et al (2015) A semantic-based visualised wiki system

(SVWkS) for lesson-learned knowledge reuse situated in product

design. Int J Prod Res 53(8):2524–2541

35. IEEE Computer Society (2015) Guide to the systems engineering

body of knowledge (SEBoK), version 1.5.1. http://sebokwiki.org/

36. International Organization for Standardization (2014) ISO/IEC

24744:2007—software engineering—metamodel for develop-

ment methodologies

37. Jung JJ (2013) Semantic wiki-based knowledge management

system by interleaving ontology mapping tool. Int J Softw Eng

Knowl Eng 23(1):51–63

38. Kleiner FA, Abecker AB, Mauritczat MC (2012) Incident and

problem management using a semantic Wiki-enables ITSM

platform. In: 4th international conference on agents and artificial

intelligence, vol 1, pp 363–372

39. Kluza K, Nalepa GJ, Lisiecki J (2014) Square complexity metrics

for business process models. Adv Intell Syst Comput 257:89–107

40. Krötzsch M, Vrandečić D, Völkel M (2006) Semantic Mediawiki.

In: Lecture notes in computer science, ISWC, Springer, Berlin,

pp 935–942. doi:10.1007/11926078

41. Lahoud IA, Monticolo DB, Hilaire VC (2014) A semantic wiki to

share and reuse knowledge into extended enterprise. In: 10th

international conference on signal-image technology and internet-

based systems, SITIS, pp 702–708

42. Lahoud IA et al (2013) A semantic wiki to support knowledge

sharing in innovation activities. In: Lecture notes in electrical

engineering, vol 186, pp 217–230

43. Laporte C, Fanmuy G, Ptack K (2012) The development of

systems engineering international standards and support tools for

very small enterprises. In: 22nd annual international symposium

of the international council on systems engineering, INCOSE

2012 and the 8th biennial European systems engineering con-

ference, vol 3, pp 1563–1590

44. Laporte C, O’Connor R, Fanmuy G (2013) International systems

and software engineering standards for very small entities.

CrossTalk 26(3):28–33

45. Leclercq É, Savonnet M (2012) Système d’information pour la

production de connaissances: L’approche wiki sémantique.

Ingénierie des Systèmes d’Information 17(3):143–166

46. Liang PA, Avgeriou PA, Clerc VB (2009) Requirements rea-

soning for distributed requirements analysis using semantic wiki.

In: 4th IEEE international conference on global software engi-

neering, ICGSE, pp 388–393

47. Liska M, Navrat P (2011) SPEM ontology as the semantic

notation for method and process definition in the context of

SWEBOK. Comput Sci Inf Syst 8(2):299–315

48. Ma J et al (2012) Using a semantic wiki to improve the consis-

tency and analyzablit of functional requirements. Commun

Comput Inf Sci 319:460–473

49. Maalej W (2011) Context aware software engineering and

maintenance: the FastFix approach. http://es.slideshare.net/maa

lejw/context-aware-software-engineering-and-maintenance-the-

fastfix-approach

50. Marques AF et al (2014) Collaborative development of a

semantic wiki on forest management decision support. Scand J

For Res 29:30–43

51. Meilender TA et al (2012) A semantic wiki for editing and

sharing decision guidelines in oncology. Stud Health Technol

Inform 180:411–415

52. Méndez Fernández D, Penzenstadler D (2015) Artefact-based

requirements engineering: the AMDiRE approach. Requir Eng

20(4):405–434

53. Münch J et al (2012) Software process definition and manage-

ment. Springer, Berlin

54. Nalepa GJ, Kluza K, Ciaputa U (2012) Proposal of automation of

the collaborative modeling and evaluation of business processes

using a semantic wiki. In: IEEE international conference on

emerging technologies and factory automation. doi:10.1109/

ETFA.2012.6489769

55. Nordheimer K, Seedorf S, Thum C (2012) Semantic wiki for

tracing process and requirements knowledge in small and med-

ium enterprises. In: Ivan M, Antony T, Rami B, Judith AS (eds)

Aligning enterprise, system, and software architectures, IGI

Global, Hershey, PA, pp 23–38

56. O’Connor R, Laporte C (2012) Software project management in

very small entities with ISO/IEC 29110. Commun Comput Inf

Sci 301:330–341

57. OMG (2008) Software & systems process engineering meta-

model specification (SPEM) version 2.0. Technical report ptc/07-

03-03, Object Management Group

58. Pereira CA, Sousa CA, Soares AL (2013) Supporting conceptu-

alization processes in collaborative networks: a case study on a

R&D project. Int J Comput Integr Manuf 26(11):1066–1086

59. Rech JA, Bogner CB (2010) Qualitative analysis of semantically

enabled knowledge management systems in agile software

engineering. Int J Knowl Manag 6(2):66–85

60. Ribaud V, Saliou P (2010) Process assessment issues of the ISO/

IEC 29110 emerging standard. In: ACM international conference

proceeding series, pp 24–27

61. Ribaud V, Saliou P (2010) Using a semantic Wiki for docu-

mentation management in very small projects. In: Sánchez-

Alonso S, Athanasiadis I (eds) Metadata and semantic research.

Springer, Berlin, pp 119–130

62. Runeson P et al (2012) Case study research in software engi-

neering: guidelines and examples. Wiley, Hoboken

63. Ruı́z-Rube I et al (2013) Uses and applications of software &

systems process engineering meta-model process models. A

systematic mapping study. J Softw Evol Process

25(9):999–1025

64. Sanna GA et al (2015) A semantic social bookmarking system

based on a wiki-like approach. In: Lecture notes in electrical

engineering, vol 330, pp 533–538

65. Sateli B, Angius E, Witte R (2013) The ReqWiki approach for

collaborative software requirements engineering with integrated

text analysis support. In: International computer software and

applications conference, pp 405–411

66. Steenweg R, Kuhrmann M, Méndez-Fernández D (2012) Soft-

ware engineering process metamodels: a literature review. TUM

(Forschungsbericht; TUM-I1220), München. https://mediatum.

ub.tum.de/?id=1128389. Last visited 25 Mar 2016

67. Schatten M (2013) Knowledge management in semantic social

networks. Comput Math Organ Theory 19(4):538–568

68. Sharma A, Kushwaha DS (2010) Complexity measure based on

requirement engineering document and its validation. In: Com-

puter and communication technology (ICCCT), 2010 interna-

tional conference, pp 608–615

69. Sillaber C, Chimiak-Opoka J, Breu R (2012) Supporting social

driven requirements processes through knowledge sharing plat-

forms. In: Proceedings of the IASTED international conference

on software engineering, pp 60–66

70. Šmite D et al (2014) An empirically based terminology and

taxonomy for global software engineering. Empir Softw Eng

19(1):105–153

71. Tang A, Liang P, Van Vliet H (2011) Software architecture

documentation: the road ahead. In: 9th working IEEE/IFIP con-

ference on software architecture, WICSA, pp 252–255

72. Termité T, Kuhrmann M (2009) Das v-modell xt 1.3 metamodell.

TUM (Forschungsbericht; TUM-I0905), München. https://www4.

in.tum.de/publ/papers/tk09.pdf. Last visited 25 Mar 2016

73. Turner M (2006) Microsoft� solutions framework essentials:

building successful technology solutions. Microsoft Press, Red-

mond. ISBN 9780735623538

Requirements Eng (2017) 22:527–542 541

123

http://sebokwiki.org/
http://dx.doi.org/10.1007/11926078
http://es.slideshare.net/maalejw/context-aware-software-engineering-and-maintenance-the-fastfix-approach
http://es.slideshare.net/maalejw/context-aware-software-engineering-and-maintenance-the-fastfix-approach
http://es.slideshare.net/maalejw/context-aware-software-engineering-and-maintenance-the-fastfix-approach
http://dx.doi.org/10.1109/ETFA.2012.6489769
http://dx.doi.org/10.1109/ETFA.2012.6489769
https://mediatum.ub.tum.de/?id=1128389
https://mediatum.ub.tum.de/?id=1128389
https://www4.in.tum.de/publ/papers/tk09.pdf
https://www4.in.tum.de/publ/papers/tk09.pdf


www.manaraa.com

74. Villela K et al (2005) The use of an enterprise ontology to support

knowledge management in software development environments.

J Braz Comput Soc 2(11):45–59

75. Wijnhoven F, Brinkhuis M (2015) Internet information triangu-

lation: design theory and prototype evaluation. J Assoc Inf Sci

Technol 66(4):684–701. doi:10.1002/asi.23203

76. Zapp MA et al (2012) Collaborative machine tool design envi-

ronment based on semantic wiki technology. In: Proceedings of

the European conference on knowledge management, ECKM,

pp 1583–1586

77. Zhaoa Y (2008) High value information in engineering organi-

sations. Int J Inf Manag 28(4):246–258

78. Zhu L, Jayaram U, Kim O (2011) Online semantic knowledge

management for product design based on product engineering

ontologies. Int J Semant Web Inf Syst 7(4):36–61. doi:10.4018/

jswis.2011100102

542 Requirements Eng (2017) 22:527–542

123

http://dx.doi.org/10.1002/asi.23203
http://dx.doi.org/10.4018/jswis.2011100102
http://dx.doi.org/10.4018/jswis.2011100102


www.manaraa.com

Requirements Engineering is a copyright of Springer, 2017. All Rights Reserved.


	Dealing with software process requirements complexity: an information access proposal based on semantic technologies
	Abstract
	Introduction
	Objectives of research
	Research methodology
	Contextual information for software development activities
	Context in software engineering
	Activity context

	Model construction and implementation
	SPEM and ISO/IEC 29110 as foundations
	Specification of the demonstrator
	Architecture of the target solution
	Implementation of the demonstrator

	Validation and threats to validity
	Conclusions
	References


